
1T308A, 1T308B, 1T308B, FT308A, FT308B, FT308B

Транзисторы германиевые диффузионно-сплавные структуры *p-n-р* универсальные. Предназначены для применения в автогенераторах, усилителях мощности, импульсных устройствах. Выпускаются в металлостеклянном корпусе с гибкими выводами. Тип прибора указывается на корпусе.

Масса транзистора не более 2,2 г.

Изготовитель — Нальчинский завод полупроводниковых приборов, г. Нальчик.

1T308(A-B) FT308(A-B)

Электрические параметры

Статический коэффициент передачи тока в схеме ОЭ при $U_{KS} = 1$ В, A = 10 мА:

CACME OS HAN OKE " I D, 13 - 10 MA.	
T = +25 °C:	
1T308A, FT308A	2575
1Т308Б, ГТ308Б	50120
1T308B, FT308B	
T = +70 °C:	
1T308A, ГТ308A	От 25 до 3
	значений при
	$T = +25 ^{\circ}\text{C}$
1Т308Б, ГТ308Б	От 50 до 3
•	значений при
	T = +25 °C
1T308B, FT308B	От 80 до 3
	значений при
	T = +25 °C
7 = -60 °C, не менее:	
1T308A, FT308A	15
1Т308Б, ГТ308Б	30
1T308B, FT308B	45
11000, 11000	40

Коэффициент передачи тока в режиме малого сигнала при $U_{KB} = 5$ В, $I_3 = 1$ мА, $f = 5001000$ Гц, не менее:	
1T3085, ГТ30851T308B, ГТ308В	
Граничная частота коэффициента передачи тока при <i>U_{КБ}</i> = 5 B, <i>J</i> = 5 мА, не менее: 1T308A, ГТ308A	-
Постоянная времени цепи обратной связи при $U_{KB} = 5$ В, $I_3 = 5$ мА, $f = 5$ МГц, не более: 1T308A, 1T308B, ГТ308B	400 nc 500 nc
Коэффициент шума при $U_{KB} = 5$ В, $I_3 = 5$ мА, $f = 1,6$ МГц для 1Т308В, ГТ308В, не более Время рассасывания при $U_{K3} = 10$ В,	8 дБ
I_{K} = 50 мА, не более: 1Т308А, ГТ308А при I_{5} = 4 мА 1Т308Б, ГТ308Б при I_{5} = 2 мА 1Т308В, ГТ308В при I_{5} = 1,25 мА	1 мкс
Граничное напряжение при $I_3 = 10$ мА, не менее	15 B
1Т308А, ГТ308А 1Т308Б, 1Т308В, ГТ308Б, ГТ308В	•
Напряжение насыщения база—эмиттер при $I_K = 50$ мА, $I_B = 1$ мА, не более	0,45 B
$U_{KB} = 15 \text{ B}$ $U_{KB} = 5 \text{ B}$ $T = +70 \text{ °C}, U_{KB} = 10 \text{ B}$	2 MKA
Обратный ток эмиттера, не более: U ₃₆ = 2 B U ₃₅ = 3 B	50 MKA 1000 MKA
Емкость коллекторного перехода при $U_{Kb} = 5$ В, не более	Φn 8
не более	22 пФ

Предельные эксплуатационные данные

Постоянное напряжение коллектор—база ¹	
при отключенном эмиттере, $T = \pm 45$ °C	20 B
Постоянное напряжение коллектор—база¹ при	
обратном смещении на эмиттере, T = +45 °C	30 B
Постоянное напряжение коллектор—эмиттер ¹	
при $R_{53} = 1$ кОм, $T = +45$ °С	12 B
Постоянное напряжение эмиттер-база	
при <i>T</i> = +45 °C	3 B

При $T \approx +45...+70$ °C предельно эксплуатационные данные уменьшаются через каждые 5 °C; постоянное и импульсное напряжение коллектор—база на 1 В, постоянное напряжение коллектор—эмиттер на 0,4 В, постоянное напряжение эмиттер—база на 0,2 В.

Постоянный ток коллектора	50 mA
Импульсный ток коллектора 1 при $t_{H} = 5$ мкс,	
<i>T</i> = +45 °C	120 mA
Постоянная рассеиваемая мощность коллек-	
тора ² при <i>T</i> = +45 °C	150 MBT
Импульсная рассеиваемая мощность коллек-	
тора¹ при $t_{\rm H} = 5$ мкс, $T = +45$ °C	360 MBT
Температура <i>p-n</i> перехода	+85 °C
Температура окружающей среды	−60+70 °C

При $T = \pm 45... \pm 70$ °C предельно эксплуатационные данные уменьшаются через каждые 5 °C; импульсный ток коллектора на 4 мA, импульсная рассеиваемая мощность на 10 мBт.

$$P_{K,MAKC} = 4 (85 - T), MBT.$$

 $^{^{2}}$ При T = +45...+70 °C постоянная рассеиваемая мощность коллектора рассчитывается по формуле