Data Sheet July 1999 File Number 2281.3 # 6A, 100V, 0.600 Ohm, P-Channel Power MOSFET This advanced power MOSFET is designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. These are P-Channel enhancement mode silicon gate power field effect transistors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits. Formerly developmental type TA17501. #### **Ordering Information** | PART NUMBER | PACKAGE | BRAND | |-------------|----------|---------| | IRF9520 | TO-220AB | IRF9520 | NOTE: When ordering, use the entire part number. #### **Features** - 6A, 100V - $r_{DS(ON)} = 0.600\Omega$ - Single Pulse Avalanche Energy Rated - · SOA is Power Dissipation Limited - · Nanosecond Switching Speeds - · Linear Transfer Characteristics - · High Input Impedance #### Symbol #### Packaging #### JEDEC TO-220AB ## **Absolute Maximum Ratings** $T_C = 25^{\circ}C$, Unless Otherwise Specified | | IRF9520 | UNITS | |--|------------|-------| | Drain to Source Breakdown Voltage (Note 1) | -100 | V | | Drain to Gate Voltage ($R_{GS} = 20k\Omega$) (Note 1) | -100 | V | | Continuous Drain Current | -6 | Α | | $T_C = 100^{\circ}C$ | -4 | Α | | Pulsed Drain Current (Note 3) | -24 | Α | | Gate to Source VoltageVGS | ±20 | V | | Maximum Power Dissipation (Figure 1) | 40 | W | | Linear Derating Factor (Figure 1) | 0.32 | W/oC | | Single Pulse Avalanche Energy Rating (Note 4)EAS | 370 | mJ | | Operating and Storage Temperature | -55 to 150 | οС | | Maximum Temperature for Soldering | | | | Leads at 0.063in (1.6mm) from Case for 10sT _L | 300 | οС | | Package Body for 10s, See Techbrief 334 | 260 | οС | CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. #### NOTE: 1. $T_J = 25^{\circ}C$ to $T_J = 125^{\circ}C$. ## **Electrical Specifications** $T_C = 25^{\circ}C$, Unless Otherwise Specified | PARAMETER | SYMBOL | TEST CONDITION | IS | MIN | TYP | MAX | UNITS | |---|---------------------|---|----------------------|------|-------|-------|-------| | Drain to Source Breakdown Voltage | BV _{DSS} | $I_D = -250\mu A$, $V_{GS} = 0V$ (Figure 10) | | -100 | - | - | V | | Gate Threshold Voltage | V _{GS(TH)} | $V_{GS} = V_{DS}, I_{D} = -250 \mu A$ | | -2 | - | -4 | V | | Zero Gate Voltage Drain Current | I _{DSS} | V _{DS} = Rated BV _{DSS} , V _{GS} = 0V | | - | - | -25 | μА | | | | $V_{DS} = 0.8 \text{ x Rated BV}_{DSS}, V_{GS} = T_C = 125^{\circ}\text{C}$ | = 0V | - | - | -250 | μА | | On-State Drain Current (Note 2) | I _{D(ON)} | $V_{DS} > I_{D(ON)} \times r_{DS(ON) MAX}, V_{G}$ | S = -10V | -6 | - | - | Α | | Gate to Source Leakage Current | I _{GSS} | V _{GS} = ±20V | | - | - | ±100 | nA | | Drain to Source On Resistance (Note 2) | r _{DS(ON)} | $I_D = -3.5A$, $V_{GS} = -10V$ (Figures 8 | 8, 9) | - | 0.500 | 0.600 | Ω | | Forward Transconductance (Note 2) | 9fs | $V_{DS} > I_{D(ON)} \times r_{DS(ON)MAX}$, $I_{D} = -3.5A$ (Figure 12) | | 0.9 | 2 | - | S | | Turn-On Delay Time | t _{d(ON)} | $V_{DD} = 0.5 \text{ x Rated BV}_{DSS}, I_{D} \approx -6.0 \text{A},$ | | - | 25 | 50 | ns | | Rise Time | t _r | $R_G = 50\Omega$, $R_L = 7.7\Omega$ for V_{DSS} | | - | 50 | 100 | ns | | Turn-Off Delay Time | t _{d(OFF)} | MOSFET Switching Times are Essentially Independent of Operating Temperature | | - | 50 | 100 | ns | | Fall Time | t _f | | | - | 50 | 100 | ns | | Total Gate Charge
(Gate to Source + Gate to Drain) | Q _{g(TOT)} | V _{GS} = -10V, I _D = -6A, V _{DS} = 0.8 x Rated BV _{DSS} (Figure 14) Gate Charge is Essentially Independent of Operating Temperature | | - | 16 | 22 | nC | | Gate to Source Charge | Q _{gs} | | | - | 9 | - | nC | | Gate to Drain "Miller" Charge | Q _{gd} | | | - | 7 | - | nC | | Input Capacitance | C _{ISS} | V_{DS} = -25V, V_{GS} = 0V, f = 1MHz (Figure 11) | | - | 300 | - | pF | | Output Capacitance | Coss | | | - | 200 | - | pF | | Reverse Transfer Capacitance | C _{RSS} | | | - | 50 | - | pF | | Internal Drain Inductance | L _D | Measured From the Contact Screw on Tab To Center of Die Modified MOSFET Symbol Showing th Internal Devices | ool Showing the | - | 3.5 | - | nH | | | | Measured From the Drain
Lead, 6mm (0.25in) from
Package to Center of Die | Inductances G G ELS | - | 4.5 | - | nH | | Internal Source Inductance | L _S | Measured From the Source Lead, 6mm (0.25in) From Header to Source Bonding Pad | | - | 7.5 | - | nH | | Thermal Resistance Junction-to-Case | R ₀ JC | | | - | - | 3.12 | °C/W | | Thermal Resistance Junction-to-Ambient | $R_{\theta JA}$ | Typical Socket Mount | | - | - | 62.5 | °C/W | #### **Source to Drain Diode Specifications** | PARAMETER | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | UNITS | |--|-----------------|---|-----|-----|------|-------| | Continuous Source to Drain Current | I _{SD} | Modified MOSFET Sym- | - | - | -6.0 | А | | Pulse Source to Drain Current (Note 3) | ISDM | bol Showing the Integral Reverse P-N Junction Diode | - | - | -24 | A | | Source to Drain Diode Voltage (Note 2) | V _{SD} | $T_C = 25^{o}C$, $I_{SD} = -6.0A$, $V_{GS} = 0V$ (Figure 13) | - | - | -1.5 | V | | Reverse Recovery Time | t _{rr} | $T_J = 150^{\circ}C$, $I_{SD} = -6.0A$, $dI_{SD}/dt = 100A/\mu s$ | - | 230 | - | ns | | Reverse Recovery Charge | Q _{RR} | $T_J = 150^{O}C$, $I_{SD} = -6.0A$, $dI_{SD}/dt = 100A/\mu s$ | - | 1.3 | - | μC | #### NOTES: - 2. Pulse test: pulse width $\leq 300 \mu s$, duty cycle $\leq 2\%$. - 3. Repetitive rating: pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3). - 4. V_{DD} = 25V, starting T_J = 25 o C, L = 15.4mH, R_G = 25 Ω , peak I_{AS} = 6.0A. ### Typical Performance Curves Unless Otherwise Specified 6.0 4.8 4.8 3.6 2.4 2.4 2.5 50 75 100 125 150 T_C, CASE TEMPERATURE (°CC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE FIGURE 3. NORMALIZED TRANSIENT THERMAL IMPEDANCE ## Typical Performance Curves Unless Otherwise Specified (Continued) FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 6. SATURATION CHARACTERISTICS FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT FIGURE 5. OUTPUT CHARACTERISTICS FIGURE 7. TRANSFER CHARACTERISTICS FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE #### Typical Performance Curves Unless Otherwise Specified (Continued) FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE #### Test Circuits and Waveforms FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 16. UNCLAMPED ENERGY WAVEFORMS FIGURE 17. SWITCHING TIME TEST CIRCUIT FIGURE 18. RESISTIVE SWITCHING WAVEFORMS FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com #### Sales Office Headquarters **NORTH AMERICA** Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 TEL: (407) 724-7000 FAX: (407) 724-7240 **EUROPE** Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 **ASIA** Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029 ## This datasheet has been downloaded from: www. Data sheet Catalog.com Datasheets for electronic components.